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INVESTIGATION OF HEAT TRANSFER IN A PLANE
CHANNEL WITH DISCRETE HEAT SUPPLY WITH
ACCOUNT FOR THE AXIAL THERMAL
CONDUCTIVITY OF THE WALL

A. N. Zharov and A. V. Sharkov UDC 536.2.242

We present an analytical solution for the problem of convective heat transfer and the results of calculations
of heat transfer in channels with discrete heat release in laminar and slug flows.

The problem of the study of convective heat transfer in channels with discrete heat supply to the walls
arises in creating systems for achieving the normal thermal regime of radioelectronic equipment and, in particular,
modern antenna systems.

In investigations carried out to date, heat transfer from microcircuits in channels formed by printed circuit
boards with the microcircuits was usually determined [1, 2]. Analytical, mainly numerical, and experimental
investigations on heat transfer in plane channels with discrete sources on the walls are presented in [3—35].

In [3] results of a numerical investigation of heat transfer in channels with discrete heat release in the
walls are given in a conjugate formulation on the initial hydrodynamic and thermal section; however, no
computational relations are presented.

In [4]results of a numerical solution of a conjugate problem with a developed velocity profile are compared
with results of experimental investigations of four rows of heat generating modules located on one of the channel
walls. Experimental data that exceed somewhat the predicted results on heat transfer in the region of laminar flow
as well as good coincidence of the results of calculation with the experiment for turbulent flow are noted.
Investigations of heat transfer from discrete modules of constant temperature in a turbulent flow are presented in
[5]. In that work a numerical solution of the corresponding problem in a nonconjugate formulation is also presented.

In the above-listed works a number of characteristic trends are noted that are typical of the case of heat
transfer considered. Thus, sometimes with discrete heat supply the heat transfer coefficients in its sections may
exceed the heat transfer coefficients at that place in the channel for the case of constant heat supply by more than
a factor of two. Despite the above, as noted in [5], where separation of the heat supply sections by heat-insulating
gaps is considered from the standpoint of heat transfer enhancement, the total amount of heat removed from a
channel of fixed length does not increase.

However, up to the present time the problem of heat transfer in channels with discrete heat supply in a
conjugate formulation has not been solved analytically. Heat transfer from heat generation sources at a considerable
distance from the inlet to the channel has not received sufficient study although knowledge of it is necessary for
determining the parameters of the systems for cooling antenna arrays with a large number of parallel long channels
as well as the effect of the thermal conductivity and thickness of the wall on heat transfer.

In the present work we present accurate analytical solutions of the problems of convective heat transfer
with account for the axial thermal conductivity of the walls for laminar and slug flows of the heat carrier and discrete
change in the heat flux density on the walls and we investigate the main laws governing convective heat transfer
that characterize this case. We pose the problem as follows (sce Fig. 1).

We write down the energy equation for the liquid flow and the wall:
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Fig. 1. A plane channel with discrete heat generation sources on the walls (a)
and the change in the heat flux density on the walls as a function of x (b).
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where U = Uy for the slug velocity profile; U(y) = Uy(l — (3/ R)2) for the laminar velocity profile, U, = 3/ 2U.
The boundary and conjugation conditions have the form

Hlx=0=1y, hly=r=1 ),

oty at,
i R 3
|y 0=0, ay|y=R F(x). A3)

In writing down Eq. (2), in formulating the problem, we made the following assumptions:

the temperature difference over the wall thickness is not taken into account (it is assumed to be small);

the outer surfaces of the channel walls are assumed to be adiabatic.

First, we present a solution for a developed laminar liquid flow.

We consider symmetric discrete heat supply with equal powers of each of the sources and width of a source
{ equal to the spacing between the sources (see Fig. 1). As is known, in the formulation considered, Eq. (2) of the
system may be treated as a complex boundary condition for #;(x, y). The essence of the proposed method for solving
the problem formulated is as follows. The discrete, periodically varying (with the period 2J) heat flux density g(x)
on the walls is represented as a Fourier series on the segment 2nl < x < 2n + 2)l, n=0, 1, 2, ...

a() =%+ Z - —1)"]sin%x. (4)

Passing to the variables x and £ = y/R and denoting ¢ = ¢t — £, we seek the solution of Eq. (1) in the form of the
sum & = Uy, + ¥, where 3, is the solution that determines the temperature field at a distance from the inlet to the
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channel (x -» ) and ¥, is the solution determining the temperature field in the entry section. The equation and
boundary conditions for ¢, in the variables x, £ have the form

2 2
U,R o, 97,
A Pk ©)
a ox aE
2
Wy e B B 0@ ©
0 'geg | dX  APR O gy A0

Because of the periodicity of the heat supply law, we suggest seeking the solution #.(x, §) in the form of
the sum of a term linearly increasing with increase in x and a certain periodic function with the period of variation
over x equal to the period of variation of the heat flux density. In this case the periodic function is represented as
a Fourier series on a segment of length 2/, equal to the period of variation of ¢(x), with coefficients that are certain
functions of £, i.e.,

Iy 3]

D (x, & =4Ax+ 5t i ak(S)COS%x+bk(§)sin%z—x. Q)
k=1

Substituting 9, into Eq. (5) to determine the functions a(§) and b;(&), we obtain a system of ordinary differential
equations of second order:

BE+D(1-EYa =0, dE-D1-E)bE =0, ®)
where
kR,
D=—7"
la

and an equation for ag(&):
Gy (&) = AU, (1 = ). )
2R

The solution of system (8) is determined in the form of the power series

@ =2 ext', b ®)= };0 g & (10)

n=0

Substituting these series into system (8), we can easily obtain recurrence relations to determine the coefficients
enk and gy These relations have the form

DeOk + 2g2/( =0 ’ Delk + 6g3k =0 »
Dg()k b 2e2k =0 N Dglk - 6€3k = 0, (11)

Satisfying boundary conditions (6), we obtain that the coefficients e, and g, are equal to zero for odd
values of n, and we obtain following system of equations (for each k) to determine eg; and gog:

D (e —ep—2) * Gpaop(n+2)(n+1)=0, n=z=2,
D(gy— 8- —epyun+2)(n+1)=0, nz=2,
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n=2,4,6 .., in the sums.
The algebraic system considered can be solved at each k by representing the coefficients e, and guy in
terms of eg; and goi in the following way:

ﬁMs

k2 A g k 12
2[(7) +115Rn}g"k=/116kn[1—(—1)]’ -

St = Cu 8ok + D €ok» nZ2, ey =DBugut Fuep-

In this case the coefficients Cyy, Dyk, Bk, and Fpy introduced are determined from recurrence relations of type
(11), while Coy = Fpr = 0, Dy = —D/2, By, = D/2 have already been determined. For k=2, 4, 6, ... in the case
considered the solution of (12) is trivial, epg and gox = 0. The coefficient ap(€) in Eq. (7) and the constant A are
determined by direct integration of Eq. (9). Substituting the expressions obtained into formula (7), for the
temperature field at a distance from the inlet to the channel we finally obtain

3 ag 3grR.2 1 ¢R .4 o k7 .k
ﬂ*(x,§)=z Ule2x+—g7r2_§ _1—671_2_& +k§1 ak(é)cosTx+bk(§)sm—l—x. (13)

We now find the solution Jg,(x, §). The equations and boundary conditions for determining ¥, are similar to Egs.
(5) and (6), but the second boundary condition in Eqs. (6) is homogeneous. The solution is sought by the method
of separation of variables. Substituting 9¢,(x, &) in the form of the sum of products ¥, = § X;(x)Y;(&), for X;(x)
we immediately obtain X; = exp (—(y;/s) x), where s = UmRZ/ a; y; are the eigenvalues. To determine Y;(E), we
have the following boundary-value problem:

Y+y(1-8)y=0, (14)

2
' 12 S ’ 15
Yl§=0=0; Y|§=1—m(y—i) Yl§=120’ (15)

The quantity Y;(§) is sought in the form of a series, just as for the solution of a nonconjugate problem [6]:
Y= > A&, (16)

Substituting this expression info Eq. (14), we obtain a recurrence relation for A,:

Ap g — 4, Yi (17

=V rnmryy b= A=-

From the first boundary condition of Egs. (15) it follows that all the coefficienis A, for odd values of n are equal
to zero (i.e., n =0, 2, 4, ...). The second boundary condition of Egs. (15) yields an equation for determining the
eigenvalues y;:

i hy s\ (18)
Ag+ S oA | 1-22 | = =0.
0 n§2 n.[ llaR[)’i] n]
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To find the eigenvalues at large values of y;, we shall avail ourselves of the method suggested by Cess {71, who
used the asymptotic solution of Eq. (14). Satisfying the second boundary condition of Egs. (15) in the asymptotic
solution and performing the necessary transformations, we write the final equation for determining the eigenvalues
(ﬁ,-z = y;) of the formulated problem at large values of y; (8):

20 2 2
Aas Ass -
6 _ 2 (3@ 5) 19
B 04592216R+0.79539116Rctan( AR 19)

The eigenvalues y; (5;) calculated by Egs. (18) and (19) are presented in Tables 1 and 2. As seen from a
comparison of the eigenvalues from these tables, Eq. (19) can be used for determining §; (y;) when i = 7. However,
already at i = 5 the dependence of the eigenvalues on the combination /12s2//115R vanishes, and therefore when
i = 7 these values can be determined from the approximate formula (which follows from Eq. (19))

B;i=4i—-1/3. (19a)

When i < 7, the values of §; should be determined directly by numerical solution of Eq. (18) (see Table 1).
Thus, the solution for the entry section can be written in the form

Iy (x, §) = _ng (E)eXp(—~x). (20)

The coefficients B; are determined from the initial condition at x = 0: Jg| 0 = —U4«|x=0- In this case, since the
second boundary condition of Egs. (15) (similar to the usual boundary condition of the third kind) involves the
eigenvalue y;, the eigenfunctions Y;(§) are not orthogonal, and the determination of B; is made in a somewhat more
complex way. We write out the final formulas for determining B;:

1
gman@a—ﬁ@+ﬁunmmn+m o
Bi= ] .
[ 7@ a-8Yde+ 2577 (1)

0

The integral in the denominator is:

L= fPOA-Dd=3 3 a4, 2. :
b=y i o Ti+n+D)({+n+3)

and the integral in the numerator is

; < 7 3 1
12=£G(§)Yi(5)(1— ") di = %;2 (16(n+5)"8(n+3)‘16(n+7))+

n=0

oo [+ ‘_.2
+ 22 Ak v ¥ i+ 1)

k=1 j=0

=
JANGE

The constants S, W, and G(1) are

= L+58Y,(1)y,G(1
G- § v o2t STWmeW)
28R n=2 I, +28y,Y> (1)
S = ) W= ’
Aas SY2 (1)

Ms

=2 1, + 28y,Y: (1)
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TABLE 1. Eigenvalues of the Problem (the first six or seven values)

F
i l B; (8D 1 i 8; V369 i B; 389)
L= == 17,40 L-1—-390.6 L-1=3125
MR '

1 2,5752 6,6318 | 1 39394 | 15,519 | | 4,2368 | 17,950
2 5,7237 | 32761 2 6.5714 | 43,183 | 2 7.8648 | 61,855
3 9,6775 | 93.653 3 9.8753 | 97.523 | 3 | 10,958 | 120,08
4 | 13671 | 18688 4 | 13,733 | 188,60 4 | 14,204 | 201,74
5 | 17.669 | 312.18 5 | 17,695 | 313,12 5 | 17,808 | 820,32
6 | 21,674 | 460.76 6 | 21,683 | 470,14 6 | 21,782 | 474,44
7 | 25.371 | 643 69 7 | 95.958 | 637,97 7 | 25.448 | 647,59

L-1=78, 13 L-1=1392 L-1—3479
1 3,2777 10,743 1 4,1766 17,444 1 42418 17,993
p) 5,9018 | 34,831 2 | 7,4394 | 55,345 | 2 7.9061 | 62,507
3 9.7095 | 94.974 3 | 10,365 | 107 .44 3 | 11,045 | 121,99
4 | 13681 | 187.16 4 | 13,906 | 193,38 4 } 14,262 | 203.40
5 | 17.673 | 312,33 5 | 17.768 | 315 69 5 | 17.925 | 321,29
6 { 21,668 | 46951 6 | 21,715 | 471.56 6 | 21,794 | 474,98
7 | 25,348 | 642,50 7 | 25,348 | 642.50 7 | 25,357 | 642,99

L-1=174,0 L-1=19,53 L-1==3906
1 3,6493 | 13,317 1 4,2074 17,702 | 1 4,2467 | 18,034
2 6,1486 | 37 806 2 7,6413 | 58,390 | 2 7.9470 | 63,155
3| 9,7604 | 95.265 3 | 10,592 | 112,19 3 | 11,130 | 124,08
4 | 13,697 | 187.60 4 | 14,004 | 196.10 4 | 14,331 | 205,37
5 | 17,680 | 31257 5 | 17,809 | 317.17 5 | 17,957 | 322,46
6 | 21,678 | 46994 6 | 21,739 | 47257 6 | 21,810 | 475.67
7 | 25,357 | 642.96 7 | 25,372 | 643,75 7 | 25,685 | 659,71

L-1=6959 L-1=15625 L-1==39062
1 4,2643 | 18,185 1 4,2769 | 18,292 | 1 4,2831 | 18,345
2 8,0994 | 65,601 2 8.2121 67,439 || 2 8.9671 | 68,345
3 | 11,566 | 133.78 3 | 11,965 143,15 3 | 12,173 | 148,18
4 | 14,758 | 217.79 4 | 15,440 | 238.39 4 | 15,953 | 254,50
5 | 18,190 | 330,87 5 | 18,768 | 352,92 5 | 19,554 | 382,34
6 | 21,932 | 481.00 6 | 22,260 | 495,50 6 | 23,021 | 529,97
7 | 25,613 | 655,99 7 | 25,856 | 669.25 7 - | =

-L-1=T813 L~1=17397 L-1=195313
1 | .4,2660 | 18,206 1 4,2781 18,302 | 1 4,865 | 18,374
9 8,1213 | 65,956 2 82214 | 67591 | 2 8.2965 | 68,831
3 | 11,639 13,547 3 | 11,999 | 143,99 3 | 12/984 | 150,88
4 | 14,856 | 22071 4 | 15,519 | 240,85 4 | 16,245 | 263,89
5 | 18,253 | 333 19 5 | 18864 | 355.85 5 | 20,167 | 406,71
6 | 21,960 | 482 24 6 | 22,305 | 497,50 6 | 23,707 | 561,99
7 | 25,688 | 659.87 7 | 25,593 | 654,99 |7 — —_

L-1—13918 L-1=31250
1 4,9758 | 18,282 1 4,9822 | 18,337
2 8,2009 | 67,256 9'| 892579 | 68 192
3 | 11,923 | 14215 3 | 12,138 | 147.34
4 | 15.30 | 235,61 4 | 15,862 | 951.59
5 | 18,668 | 348,50 5 | 19,383 | 375.70
6 | 22200 | 492'84 6 | 22776 | 518,73
7 | 25,612 | 655.97 7 | 25,476 | 648,99

Remark. When i = 7, the eigenvalues can be calculated from the approximating relation (19a) or by solving
Eq. (19) for large values of . Eigenvalues found from the approximate equation are presented in Table 2.
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TABLE 2. Eigenvalues §; (y; = ﬂiz) Determined by Solving Eq. (19)

L1 i

1 2 3 4 5 6 7 8 9

0.303 1.6750 | 5.6672 9.6672 13.667 17.667 21.667 25.667 29.667 33.667
30.25 1.9660 5.6672 9.6672 13.667 17.667 21.667 25.667 29.667 33.667
151.2 2.2638 5.6672 9.6672 13.667 17.667 21.667 25.667 29.667 33.667

19-10% | 2.3195 | 5.66681 | 9.6672 | 13.667 | 17.667 | 21.667 | 25.667 | 29.667 | 33.667
3.0-107 | 2.4240 | 5.6681 | 9.6672 | 13,667 | 17.667 | 21.667 | 25.667 | 29.667 | 33.667
76-102 | 2.6623 | 5.6711 | 9.6672 | 13.667 | 17.667 | 21.667 | 25.667 | 29.667 | 33.667
1.5-10% | 28615 | 5.6750 | 9.6672 | 13.667 | 17.667 | 21.667 | 25.667 | 29.667 | 33.667
3.0-103 | 3.0734 | 5.6828 | 9.6672 | 13.667 | 17.667 | 21.667 | 25.667 | 29.667 | 33.667
2.4-10° | 3.6662 | 57843 | 9.6701 | 13.667 | 17.667 | 21.667 | 25.667 | 29.667 | 33.667
3.0-104 | 3.6662 | 58107 | 9.6701 | 13.667 | 17.667 | 21.667 | 25.667 | 29.667 | 33.667
7.6-10% | 3.6628 | 5.9831 | 9.6784 | 13.671 | 17.671 | 21.671 | 25.671 | 29.671 | 33.671
35105 | 3.6662 | 5.5343 | 97111 | 13.671 | 17.667 | 21.667 | 25.667 | 29.667 | 33.667
35-106 | 3.662 | 7.6662 | 10.060 | 13.706 | 17.673 | 21.668 | 25.667 | 29.667 | 33.667
35.107 | 3.662 | 7.6662 | 11.328 | 14.045 | 17.734 | 21.683 | 25.671 | 29.668 | 33.667

Remark. The values of the first eigenvalues (for different values of Ll=1/L= (AzU,ZnR3)/ (,llaaz)) listed
in the table should not be used in calculations; the data of Table 1 are used for that purpose. They are given only
to illustrate the trend of the eigenvalues toward values that are independent of L lat large values of i (( = 5). In
this case the disappearance of the dependence on L1 is observed earlier than the coincidence of the eigenvalues
with those calculated by the accurate equation (see Table 1) at i = 7, and therefore to determine eigenvalues at
i = 7, relation (19a) may be used.

5 gR <
G(1)=—T6%—2-— k; a (1).

Summation in the sums presented above is made over even valuesof nand j, n=0, 2,4, ..., =0, 2, 4, ....
Thus, the unknown values entering into formula (20) and needed for determining the solution ¥, in the
entry section have all been determined.
Joining solutions (20) and (13) respectively for the entry section and the section of the channel at a distance
from the inlet, we obtain the final solution for the temperature field #(x, &) over the entire length of the channel
with a laminar flow:

_3 ag 3gR.2 1 gR 4
13(-7555)"4 UmR12x+87[;§ 16 TZ—‘S +
+ 2 ak(E)cos%x+bk(§)sin£;t—x+ E Biexp(—%x) Y; (). (22)
k=1 i=1

The channel wall temperature #; (x) is determined from Eq. (22) at£ =1, i.e., 1 = 5 + ¥(x, 1), ¥y, = (x,
1), and the local number Nu, is found from the formula

ah 2 g‘glgﬂ (23)

Nu ,
oo 8,70
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where 9, is the wall temperature; ¥ is the mass-mean temperature in the section considered.
Omitting intermediate calculations, we write down an expression for the local number Nu,:

Nux={ _122 E [[E enkn] cos%x+ [22 gnkn] sin%j—x} +
k=1 n=

n=2
exp : x

{024286+j—k21 H}j enk%] cos &L x +

n=2

l =] oo
+2;§— D Bi[z An
i=1

n=2

o nin+4 . km
2 Enk (n + 1r; (n+3)] Sm“"} *
A2

YR |

‘_"Ms

(n+4) V] 24
(2 An(nil)(n+3)]exp(’s‘x” : (4

The summation is made over even values of n. Assuming that x >  and e, = (A2/gR)ent, 8k = A2/ qR)gnk,
B; = (42/qR)B; we obtain in formula (24) an expression for the local Nusselt number at a distance from the inlet
of the channel; in this case e,;, g4, and B; no longer depend on g:

Nuxdisz{l-i-2kg1 [[Ezénkn] cos%x+ [E §nkn] sin—@;r—x} }x
= n=

2]

x{0.24286+k§ Hz nk(_n%%%‘}?ﬁ] cos X x +

o = nn+4) .k :
+ (nzzgnk(n+l)(n+3)]sm ] x} ' *9)
As is seen from the formula obtained, the local number Nu, 4 for discrete heat supply has an oscillating character
as a function of x, i.e., at a distance from the inlet of the channel a quasistabilized heat transfer law holds with
respect o x.

The solution of the problem for slug liquid flow is achieved in a similar way.

Results of Calculations and Their Analysis. Using the formulas obtained for both the laminar and slug flow
we performed calculations of the local and mean (over the section of heat supply) Nusselt numbers in a wide range
of parameters (with the width of the source equal to the spacing between the sources).

The dependence of the local Nusselt number on the longitudinal coordinate for different thermal
conductivities of the wall for an air flow are presented in Fig. 2 respectively for the thermal entrance region (the
data are given only for slug flow) and the region at a distance from the inlet of the channel. For comparison the
figure contains dependences for the case of uniform heat supply over the entire channel length. As seen from the
results presented, the heat transfer coefficient at the site of the discrete source can exceed sﬁbstantially the heat
transfer coefficient at this site for the case of uniform heat supply. This is confirmed by data obtained earlier by
other investigators {3, 51]. :

An analysis of the formulas obtained for the local Nusselt number shows that this criterion depends on the
dimensionless combinations: Pe = Uh/a, I1=(4;/4;3)- (/1) and also on R/! (A=2R), or Nu, = f{(Il, Pe, R/, x/R).
It is clear that when the width of a source is not equal to the spacing between the sources, the indicated groups are
supplemented with the ratio //L, where L is the spacing between the sources along the heat carrier path. The
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Fig. 2. Variation of the local Nusselt number (Nu, = a,h/A;) with the
longitudinal coordinate x/A in the case of discrete and uniform heat supply
with Pe = 856; a) entrance section; discrete heat supply, R/I=0.25, slug flow:
D IT" =0.283, A1 = 0.3 W/ (m-K); 3) 9.43 and 10; uniform heat supply: 2) A;
= 0.3 W/ (m-K); 4) 10; b) at a substantial distance from the inlet of the
channel; discrete heat supply, R/[=0.25; 1) slug flow IT* = 0.283; 2) laminar,
IT* = 0.283; 3) laminar, II* = 4.717.

number IT has a clear physical meaning: at the same temperature gradients in the liquid perpendicular to the wall
near a source and in the wall along it, into the portion adjacent to the source without heat release, it represents
the ratio of the power removed by convection directly from the surface of the source into the air and that removed
by conduction to the portion of the wall adjacent to the source (for subsequent transfer likewise to the air in the
channel).

In determining the mean Nusselt number Nug.. for the section of heat generation as the integral mean one
over the section of heat supply, we performed calculations of its dependence on the indicated dimensionless
combinations IT and Pe. The dependence of the mean number Nug.. over the section of heat supply for the sections
at a distance from the inlet of the channel on the number I1, which takes into account the thermal conductivity and
thickness of the channel wall, is presented in Fig. 3. As is seen from this graph, as the number IT increases (which
corresponds, for example, to an increase in the thermal conductivity of the wall), the number Nuge. at all the values
of Pe tends to the value 4.1, which corresponds to heat transfer in the case of uniform heat supply over the entire
length of the channel. From this graph it is also seen that with a decrease in I the heat transfer coefficient increases,
tending to a certain value determined by the parameter Pe at constant values of R/l and I/L, i.e., actually to the
value of the Nusselt number obtained from the solution of the corresponding nonconjugate problem (without
allowance for the axial thermal conductivity of the wall) [8].
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Fig. 3. Dependence of the integral mean limiting Nusselt number Nuge.
(atsech/ hy) on the number IT ((A;/4;)-(8/0)-(R/1)) for a laminar flow; the
width of a source is equal to the spacing between the sources, R/[ = 0.25: 1)
Pe = 856; 2) 86.

NUse'E
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Fig. 4. Dependence of the integral mean limiting Nusselt number Nug,
(atgech/A) for sections with heat release on the number Pe (uh/a) for a
laminar flow; the width of a source is equal to the spacing between the
sources, R/1=0.25: 1) IT* = 0.0943; 2) 0.943; 3) 0.00943.

Thus, the increase in the heat transfer coefficient at the site of the source in relation 1o the heat transfer
coefficient at this site in the case of uniform heat supply over the entire length of the channel depends substantially
on the thermal conductivity and thickness of the wall, and, for example, for air at /1= 0.1, R/] = 0.25, and Pe
= 856 already at A; = 5 W/(m-K) the difference between these heat transfer coefficients amounts to no more than
8% (for the maximum heat transfer coefficient in the region of the source, no more than 13%). The dependence
of the Nusselt number on the number Pe at a distance from the inlet of the channel is presented in Fig. 4.

Consequently, the number Nug.. at a distance from the inlet of the channel is not a constant value, as in
the case of a uniform heat supply (Nue =4.12), but depends on the number Pe. The same result aiso follows from
the solution of the nonconjugate problem of heat transfer, i.e., without allowance for the axial thermal conductivity
of the wall.

Another important characteristic of heat transfer under conditions of discrete heat supply with allowance
for conductive spreading of heat along the channel wall is the power removed by convection to the air in the channel
directly from the surface of the source (or the convective heat flux density). In the considered case of an adiabatic
outer surface of the channel wall the total power of heat release by the source Py is represented as a sum of
powers: that removed by convection directly from the surface of the source P.gnysec and that conducted away into
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Fig. 5. Dependence of the ratio of geopy.sec 10 ¢ on the numbers II and Pey
for h/1=0.5 and /L =0.5: 1) Pep = 143; 2) 571; 3) 1142; 4) 4489.

the portions of the wall adjacent to the source (on the left and the right) for subsequent transfer likewise to the air
in the channel already in the spacings between the sources Pgond sec., 1-€» Psec = Peonv.sec T Peond.sec- FOr sources
in the form of transverse bands (a two-dimensional problem) Pge = ¢l, where g is the density of the heat flux from
a source, and Peony.sec = Geonv.secls WHETE geony.sec 1 the average convective heat flux density over the source length,

YLL+ a,a
9eonv.sec = Ao/ (R f| _1

Results of a calculation of the ratio geony.sec/g (or, which is the same, the fraction of the power removed by
convection directly from the surface of the source Peony.sec/ Psec) a$ a function of the number II in a wide range of
the determining parameters are presented in Fig. 3.

Knowing agec and geony.sec, it is not difficult to determine the superheating of the wall temperature in the
region of the source relative to the air (liquid) temperature under the source: O = Ve — Dair = Geonv.sec! ¥sec NUsec
= agech/A;). Investigation of the change in the values of Nug, and geonysec a8 a function of the determining
parameters for the subsequent determination of Osec for solving practical problems seems to be more convenient
than direct determination of superheating from a theoretical solution of the problem.

Results of calculations of the local numbers Nu, also show that for certain ratios between IT and Pe (usually
at a low thermal conductivity of the wall 41 and a small thickness &) at the middle of the section without heat supply
a change in the heat flux direction to the opposite is possible, i.e., the heat flux is directed from the liquid to the
walls, and this corresponds to negative values of the local Nusselt numbers. This can be explained by a rate of heat
transfer by convection along the flow between sources that exceeds the rate of heat conduction along the wall.

A calculation of the change in the local Nusselt numbers in the entrance section, for example, for slug flow
(see Fig. 2), shows that at Pe = 856 the deviation of the maximum Nusselt number in the of heat release section
from its limiting value at large values of x/k amounts to no more than 9%, already in the fifth section of heat supply.
In this case, starting from the second or third section the ratio of the local Nusselt number with discrete heat supply
to the local Nusselt number obtained from the solution of the cbrresponding conjugate problem with uniform heat
supply depends weakly on the location of the source, increasing somewhat with distance from the inlet of the
channel. ‘

We should also note that the limiting average Nusselt number for the heat release section increases with
increase in R/
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The method suggested in the present work seems to be efficient for solving problems in the case of an
arbitrary periodic change in the heat flux density on the wall. In particular, the case where the width of a source
is not equal to the spacing between the sources can be analyzed similarly.

Using the formulas presented or Figs. 3 and 4 one can determine the limiting values of the Nusselt number
for the sections with heat release when conducting practical calculations of heat transfer in long plane channels
with discrete sources of heat generation on the walls.

NOTATION

ti, tp, temperatures of the wall and liquid, respectively; ¢y, flow temperature at the inlet to the channel;
Un, U, maximum and mean velocities of liquid in laminar flow; Uy, liquid velocity in slug flow; ¢, density of heat
flux from a discrete heat generation source; A1, A3, thermal conductivities of the wall material and liquid; a, thermal
diffusivity of liquid; &, channel wall thickness; 2 = 2R, distance between the walls; /, width of heat generation
source, equal to the spacing between the sources; L, spacing of the sources along the heat carrier path and the
coefficient in the tables; IT* = IIR/L
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